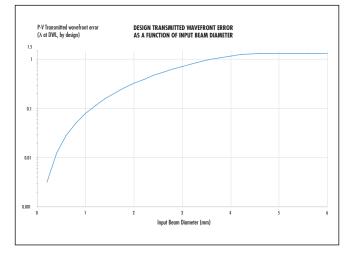

TECHSPEC® Vega[™] Nd:YAG Laser Line Beam Expanders 355nm • 5X #35-101

- λ/10 Transmitted Wavefront Error
- Fused Silica Substrate Offers Excellent Price and Performance
- Divergence Adjustment to Compensate for Input Beam Divergence
- TECHSPEC® Vega $^{\text{\tiny{M}}}$ Broadband Beam Expanders Also Available


TECHSPEC® Vega™ Nd:YAG Laser Line Beam Expanders are designed for demanding laser applications including laser materials processing, medical, and research. These compact beam expanders are optimized at Nd:YAG wavelengths for high performance transmitted wavefront, with most designs achieving better than $\lambda/10$ transmitted wavefront error. TECHSPEC® Vega™ Nd:YAG Laser Line Beam Expanders easily mount with M30 x 1 threading and provide excellent value both for single unit purchases as well as volume integration.

Design Wavelength (DWL):	355nm
Magnification:	5X
Maximum Input Aperture:	8mm
Divergence Adjustable:	✓
Maximum Output Aperture:	30mm
Length (With Threads):	89mm
Housing Outer Diameter:	40mm
Weight:	91g
Damage Threshold:	2.5 J/cm² @ 10ns, 20Hz, 355nm
Transmission @ DWL:	>99 (nominal)
Lens Material:	Fused Silica
Coating:	R _{abs} <0.25% @ 355nm
*Mounting Thread:	M30 x 1

For more cost sensitive applications that don't require divergence adjustment, see our Scorpii™ Nd:YAG Beam expanders. For applications that require sliding optics or larger input apertures, please see our Draconis™ Nd:YAG Laser Line Beam Expanders.

