Product added to cart

1200 Grooves, 30mm Square, 250nm Ruled Diffraction Grating

Reflective Ruled Diffraction Gratings

Stock #55-260 5-7 Days
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
Qty 1+
Volume Pricing
Request Quote
Groove Density (grooves/mm):
Blaze Wavelength (nm):
Blaze Angle (°):
Dimensions (mm):
30.0 x 30.0 ±0.5
Clear Aperture (%):
Bare Aluminum
Ruled Grating
Direction of Grooves:
Parallel to Short Dimension
Length (mm):
Substrate: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Float Glass
Thickness (mm):
9.50 ±0.5
Reflective Diffraction Grating
Width (mm):
Alignment of Grooves to Edge (°):
Absolute Peak Efficiency, Typical (%):
71 , true for p-plane
Peak Efficiency Avg, Typical (%):

Regulatory Compliance

RoHS 2015:
Reach 219:
Certificate of Conformance:


  • Up to 80% Efficiency
  • Bare Aluminum Coating
  • Blaze Wavelength Options from 250 to 1600nm

繞射光柵是光學元件,可將多色 (白色) 光分隔 (繞射) 為多種波長分量。每個光柵都由多次複製的高精度母光柵構成。重複光柵的複製流程如下所述。


Diffraction ruled gratings are used in a variety of monochromators for research, student and industry use. Almost all commercially available spectrophotometers (ultraviolet, visible, infrared, fluorescence, Raman, atomic absorption) utilize diffraction gratings to select specific wavelengths or scan over a wavelength interval. Generally, replicated ruled gratings should be used when high peak efficiency and throughput is required. Replicated holographic gratings should be used when minimum stray light is critical and high resolution is needed. Note: Damage thresholds for both ruled and holographic gratings are 350 milli-joules/cm2 for pulsed lasers and 40 Watts/cm2 for CW lasers.

Handling Gratings: Gratings require special handling, making them prone to fingerprints and aerosols. Gratings should only be handled by the edges. Before attempting to clean a grating, please contact us.

Manufacturing of Ruled Gratings

Ruled diffraction gratings are produced by ruling a series of closely spaced, straight parallel grooves into an optically flat aluminum coated substrate, known as the “master grating.” Precise, interferometrically-controlled ruling engines utilize a very fine diamond tool to form a sawtooth-shaped groove profile at a given angle (commonly referred to as the blaze angle) on the surface of a prepared substrate. The replication process begins with the surface contour of a ruled master grating being vacuum deposition-coated with an extremely thin separation layer. An aluminum coating is then deposited on top of this separation layer. Then, an epoxy-coated flat glass substrate is placed on top of the layer-covered master, duplicating the grooved surface. The combination is cured and the process is finished when the replicated grating is separated from the master grating.

Sales & Expert Advice
or view regional numbers
enter stock numbers to begin