Edmund Optics®使用自己的和第三方Cookie來優化我們網站的技術服務功能。了解我們如何使用Cookie。

  • 我的帳戶
  • 0
Resources / Application Notes / Lasers / Understanding Spatial Filters
Understanding Spatial Filters
Edmund Optics Inc.

Understanding Spatial Filters

Spatial Filters are designed to be used with lasers to "clean up" the beam. Often times a laser system does not produce a beam with a smooth intensity profile. In order to produce a clean Gaussian beam, a spatial filter is used to remove the unwanted multiple-order energy peaks and pass only the central maximum of the diffraction pattern (see illustration). Also, when a laser beam passes through a system, dust in the air or on optical components can disrupt the beam and create scattered light. This scattered light can leave unwanted ring patterns in the beam profile. The spatial filter removes this additional spatial noise from the system. The spatial filter assembly consists of a microscope objective, a pinhole aperture, and a positioning mechanism. The positioning mechanism has precision X-Y movements that center the pinhole at the focal point of the objective lens. Our TECHSPEC® Laser Objectives are designed for HeNe lasers (632.8nm) and provide the smallest spot sizes possible. Choosing the correct pinhole and objective combination will yield optimal results. The following equations were used to determine the values for the Aperture Selection Chart.

Spatial Filter Assembly


Equation 1.0 Beam Spot Diameter (microns) = (1.27 * λ * f) / D
λ = wavelength of laser (microns)
f = focal length of objective lens (mm)
D = input beam diameter (mm)


Equation 2.0 Pinhole size is then determined for the table (see note):
Pinhole Diameter (microns) = 1.5 * Beam Spot Size Diameter (microns)


Note: The factor of 1.5 in Equation 2.0 is determined as the optimal factor in order to pass the maximum amount of energy, while eliminating as much spatial noise as possible.

Aperture Selection Chart
EFL of Microscope Objective Lens (mm)5.5mm8.0mm8.5mm9.0mm
0.96mm Input Beam Dia. 8μm 10μm 12.5μm 12.5μm
0.81mm Input Beam Dia. 8μm 12.5μm 12.5μm 15μm
0.75mm Input Beam Dia. 8μm 12.5μm 15μm 15μm
0.70mm Input Beam Dia. 10μm 15μm 15μm 15μm
0.68mm Input Beam Dia. 10μm 15μm 15μm 15μm
0.63mm Input Beam Dia. 10μm 15μm 15μm 15μm
0.48mm Input Beam Dia. 12.5μm 20μm 20μm 25μm

If you would like to see other topics covered or more detailed information, let us know. We invite you to discuss any suggestions or specific application requirements with our engineering department at 800-363-1992 or contacting us online.

Variety of DPSS, diode, gas, or semiconductor lasers, as well as laser accessories for measuring, positioning, bar code scanning, life sciences, or machine vision applications.

Designed or tested for use with lasers, check out our selection of laser grade lenses, mirrors, filters, optics assemblies, and more.

Large variety of laser optics designed for laser beam manipulation in surgical or aesthetic laser applications. 

Learn about laser damage threshold (LDT) to ensure superior results and long product lifetime and to avoid damage to your laser optics.


Need a Quote?

Edmund Optics Facebook Edmund Optics Twitter Edmund Optics YouTube Edmund Optics LinkedIn Edmund Optics Google+ Edmund Optics Instagram

SSL, SSL Certificates, Secure Sockets Layer